Two days, ten topics, over 25 inspiring presentations

The presentations will be based around ten topics which collectively provide complete coverage of the high-end sensor market.

Speakers Include

Rainer Minixhofer
Tristan Rousselle
Henry White
Pierre-Damien Berger
Nicholas Burgwin
Wilmuth Muller
Richard Dixon
Denis Pasero
Wim Van Thillo
Bernhard Straub
Sergey Yurish
Sergio Nicoletti
Johan Pedersen
Pim Kat
Peter O'Brien
Iwan Davies
Iñigo Artundo


Silicon radars and smart algorithms: a unique combination for disruptive innovation in perceptive IoT systems

Wim Van Thillo - imec

Perceptive IoT systems are cyber-physical systems with perception and connectivity capabilities on par or superior to those of humans. Thanks to these capabilities, they can seamlessly blend into our everyday environments, creating a fully intuitive IoT. The autonomous car is a very well-known example that combines cutting edge sensing and processing capabilities with the latest wireless connectivity to this effect. When technology cost comes down and manufacturing volumes go up, plenty more applications will emerge, leading to truly smart cities, infrastructure, homes and industrial environments.

Radar is such a sensing technique currently undergoing dramatic reduction of cost, power consumption and form factor combined with an increase in resolution and algorithmic capabilities. These advances are driven by semiconductor technology scaling and machine learning improvements. In this talk, we will address both those aspects and review recent developments in 79GHz and 140 GHz CMOS radar as well as in advanced machine learning capabilities. 

High-End Sensors & Sensor Systems: How to achieve high metrological performances

Sergey Yurish - International Frequency Sensor Association

The presentation will describe modern developments and trends in the field of high-end sensors and sensor systems design. Its background is based on programmable parameter-to-frequency (time) converters as a digital sensor’s core and structural-algorithmic methods for data extraction in order to move from a traditional analog-to-digital conversion to alternative frequency (period, duty-cycle, time interval)-to-digital conversion. Working in the frequency-time signal domain simplifies design, and obviates some technical and technological problems, due to the properties of frequency as an informative parameter of sensors and transducers. The major benefits offered by such an approach are high reliability, high metrological performance, wide functionality, cost effectiveness and scalability. Different examples of high-end sensors and sensor systems will be given and discussed in details.

Secure & intelligent sensing for smart building and city solutions

Marianne Vandecasteele - imec

A safe and efficient infrastructure is the foundation on which an economy is built and is allowing us to adapt to the pressures of rapid urbanization, climate change, and other trends; To come to such an infrastructure it is a must to combine advances in sensors, controls, and software. The talk will focus on required advances in sensors for smart building solutions and how these will make informed operating practices possible and in this way maximize benefits to human health and well-being while minimizing energy consumption. Monitoring the air quality and making the data that’s relevant available, is the first step towards awareness and developing such a system wide solution. To achieve this goal, measuring sufficient spatial and temporal data is critical and hence dense sensor networks are needed. The talk will outline the state-of-the-art in gas sensors for air quality monitoring networks and considers emerging and potential future developments. 

Challenges for Optical and IR Sensors for Future Defence Aircraft

Henry White - BAE Systems

Military air platforms are a challenging environment for sensing systems. The system requirements are increasing as sophisticated pilot assisted systems as well as complete autonomous operation mature. Increased emphasis on stealthy aircraft restricts the use of active systems and place significant demand on the physical realisation. Threats that need to be detected are becoming more challenging in terms of their signature and the distances over which they need to be detected. The presentation will discuss these challenges in relation to optical and IR sensors and how technology developments are required to address them.

Considerations in IoT Technologies

Johan Pedersen - Sigma Designs

The Internet of Things technology has been advancing, and consequently growing across residential, commercial and industrial spaces. It is poised to make an impact as it reaches mass adoption, but for this to occur, the technologies behind it need to be optimized for connectivity, security, interoperability and considering future advancement and uses. The Z-Wave communications protocol dominates the residential IoT market with smart home products, and is paving the way for security responsibility. Z-Wave is now protected by the Security 2 (S2) framework, which was developed with the hacker community. S2 comes within the Z-Wave system-on-chip, so manufacturers don’t have to learn or deploy extra security measures to secure devices. These steps can serve as a model as other industries develop. In this talk, Johan Pedersen from Sigma Designs will examine the considerations needed in designing IoT technologies, including interoperability, security and future features.

Fiber optic ultra high temperature (1000°C) vibration sensors

Nicholas Burgwin - Fibos

Accelerometers used to monitor component vibration are increasingly being placed in harsh environmental conditions. Vibration monitoring, such as turbine blade or exhaust vibration, require measurements to be made in elevated temperature environments that well exceed the acceptable operating conditions of traditional piezoelectric accelerometers. Fibos has developed the worlds first ultra high temperature accelerometer that can operate up to 1000°C (~1800°F) utilizing a fiber optic sensor. This presentation will dive into the details of how the accelerometer is made, evaluate the performance characteristics of it, and highlight other benefits of the optical sensing element such as EMI immunity.

VCSEL Pilot Line for ranging and 3D gesture control sensors

Iwan Davies - VIDaP Consortium

VCSELs are key components enabling many fast growing markets, including optical sensors. As GaAs-based semiconductor components, they can be processed cost-efficiently, resembling LED processing: IQE is the manufacturer of epitaxial material, while Philips has a production line for front-end and back-end processing. One pilot-line end customer, STm, designs VCSELs into Time-of-Flight sensor products, capable of making accurate distance measurements, based on the round-trip travel time of photons between the VCSEL and a CMOS sensor. Uses for ToF using VCSELs ranges from advanced proximity sensors to 3D gesture detection modules, benefiting e.g. smartphone/tablets, laptops/monitors, consumer robotics, gaming, security & building management and automotive.

Presentation title to be confirmed.

Rainer Minixhofer - AMS AG

Awaiting abstract.

Presentation title to be confirmed.

Bernhard Straub - Infineon Technologies

Awaiting abstract.

Meeting Energy Demand for IoT Sensors with Solid State Batteries

Denis Pasero - Ilika Technologies

Awaiting abstract.

Presentation title to be confirmed.

Pim Kat - Technobis

Awaiting abstract.

New trends in optical chemical sensing: the MIRPHAB approach

Sergio Nicoletti - MIRPHAB

Awaiting abstract.

The promise of digital olfaction

Tristan Rousselle - Aryballe Technologies

Awaiting abstract.

Presentation title to be confirmed.

Richard Dixon - IHS Markit

Awaiting abstract.

Photonic integrated circuits for LiDAR

Iñigo Artundo - VLC Photonics

Awaiting abstract.

*All speakers and presentations are subject to change.

Book your place today - 3 events, 2 days, 1 ticket
The must attend conference for all professionals involved within the high-end sensor market.